Rabu, 20 Februari 2013

Pengertian Energi Pengaktifan Ea


Molekul-molekul pereaksi selalu bergerak dan peluang terjadinya tumbukan selalu ada. Akan tetapi, tumbukan yang terjadi belum tentu menjadi reaksi jika energi yang dimiliki oleh masing-masing pereaksi tidak cukup untuk menghasilkan tumbukan efektif, meskipun orientasi molekul sudah tepat untuk menghasilkan tumbukan efektif. Agar tumbukan antarmolekul pereaksi efektif dan menjadi reaksi maka fraksi molekul yang bertumbukan harus memiliki energi lebih besar daripada energi pengaktifan. Apakah energi pengaktifan itu?

Energi pengaktifan adalah energi minimum yang diperlukan untuk menghasilkan tumbukan efektif agar terjadi reaksi. Energi pengaktifan dilambangkan oleh Ea. Menurut Arrhenius, hubungan antara fraksi tumbukan efektif dan energi pengaktifan bersifat eksponensial sesuai persamaan berikut.
energi pengaktifan
Keterangan:
f = frekuensi molekul yang bertumbukan secara efektif
R = tetapan gas
Ea = energi pengaktifan
T = suhu reaksi (K)
Persamaan tersebut menunjukkan bahwa reaksi dengan energi pengaktifan kecil memiliki harga f yang besar. Akibatnya, nilai tetapan laju (k) besar dan reaksi berlangsung lebih cepat. Jika suhu dinaikkan, harga f menjadi besar dan tetapan laju (k) juga besar sehingga reaksi berlangsung lebih cepat. Energi pengaktifan untuk setiap reaksi (misalnya: A + B C) umumnya memiliki bentuk grafik seperti pada Gambar 4.9. Pada Gambar 4.9, energi pengaktifan diungkapkan sebagai energi penghalang yang harus diatasi oleh setiap molekul pereaksi agar menjadi produk.
Hubungan energi potensial dan koordinat reaksi
Gambar 4.9 Hubungan energi potensial dan koordinat reaksi. Agar suatu pereaksi dapat menjadi hasil reaksi, pereaksi harus memiliki energi yang dapat melampaui energi pengaktifan. Setiap reaksi memiliki nilai energi pengaktifan yang berbeda.

Jika Anda perhatikan grafik tersebut, energi pengaktifan ada hubungannya dengan perubahan entalpi reaksi. Dapatkah Anda menunjukkan hubungan tersebut? Apakah reaksinya eksoterm atau endoterm? Oleh karena energi hasil reaksi lebih rendah dari energi pereaksi maka nilai ΔH untuk reaksi tersebut negatif. Dengan kata lain, reaksinya eksoterm. Sebaliknya, jika arah reaksi dibalikkan, yakni: C A + B maka produk reaksi (A + B) memiliki energi lebih besar dari pereaksi C. Besarnya energi pengaktifan untuk reaksi kebalikannya, Ea(balik) = Ea(maju) + ΔHreaksi.
Jadi, selisih energi pengaktifan untuk kedua reaksi adalah sebesar ΔHreaksi. Pada pembahasan sebelumnya, Anda sudah mengetahui bahwa katalis dapat mempercepat reaksi dengan jalan turut serta dalam tahap-tahap reaksi dan pada akhir reaksi katalis diperoleh kembali. Bagaimana mekanisme kerja katalis dihubungkan dengan energi pengaktifan? Sebagaimana diuraikan sebelumnya, reaksi penguraian hidrogen peroksida akan lebih cepat jika pada reaksi ditambahkan katalis MnO2. Persamaan reaksinya:
H2O2( l ) → H2O( l ) + O2(g)
Kerja katalis dalam mempercepat reaksi adalah dengan cara membuat jalan alternatif (jalan pintas) bagi pereaksi dalam membentuk produk, yaitu dengan cara menurunkan energi pengaktifannya, seperti ditunjukkan pada Gambar 4.12 berikut.
Mekanisme reaksi yang ditempuh oleh katalis adalah dengan cara menurunkan energi pengaktifan reaksi
Gambar 4.12 Mekanisme reaksi yang ditempuh oleh katalis adalah dengan cara menurunkan energi pengaktifan reaksi.
Jalan atau tahap-tahap reaksi yang ditempuh oleh pereaksi menjadi hasil reaksi dapat dijelaskan. Misalnya, reaksi penguraian H2O2 dengan katalisator MnO2 adalah sebagai berikut.
Tahap 1 : 2H2O2 + MnO2 → 2H2O + 2MnO3
Tahap 2 : 2MnO3 + 2H2O2→ 2H2O + 2O2 + MnO2
Reaksi total : 4H2O2 → 4H2O + 2O2
Katalis dapat menurunkan energi pengaktifan reaksi, baik ke arah pereaksi maupun ke arah produk dengan selisih energi sama besar, tetapi ΔHReaksi tidak berubah.

Tidak ada komentar:

Posting Komentar